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Abstract

In this paper, we introduce a new numerical procedure for simulations in geometrical optics that, based on the recent

development of Eulerian phase-space formulations of the model, can deliver very accurate, uniformly resolved solutions

which can be made to converge with arbitrarily high orders in general geometrical configurations. Following previous

treatments, the scheme is based on the evolution of a wavefront in phase-space, defined as the intersection of level sets

satisfying the relevant Liouville equation. In contrast with previous work, however, our numerical approximation is

specifically designed: (i) to take full advantage of the smoothness of solutions; (ii) to facilitate the treatment of scattering

obstacles, all while retaining high-order convergence characteristics. Indeed, to incorporate the full regularity of solu-

tions that results from the unfolding of singularities, our method is based on their spectral representation; to enable a

simple high-order treatment of scattering boundaries, on the other hand, we resort to a discontinuous Galerkin finite

element method for the solution of the resulting system of equations. The procedure is complemented with the use

of a recently derived strong stability preserving Runge–Kutta (SSP-RK) scheme for the time integration that, as we

demonstrate, allows for overall approximations that are rapidly convergent.
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1. Introduction

The recognition that numerical simulation of scattering processes can greatly accelerate the assessment

and design of new technology has translated into its integration in the most varied engineering applications

that rely on wave phenomena. Indeed, today numerical simulations of wave propagation guide develop-
ments in areas ranging from radar, sonar and remote sensing to electronics and microscopy. As a result,

and due to the increasing demands for accuracy and speed, the need for improved numerical algorithms

for the treatment of such problems continues to intensify, as algorithmic advances can immediately enable

corresponding technological gains. Over the last two decades, a variety of advanced numerical methods

have been developed to accurately and efficiently solve full-wave models of electromagnetic, acoustic and

elastic wave propagation; see e.g. [3,5,9,21,30,37] and the references cited there. By the very nature of these

models, however, rigorous methods for their numerical solution are limited in the range of frequencies they

can practically deal with, as their accuracy hinges on the full resolution of the wavelength of oscillation of
field quantities. As a consequence, relevant simulations in a variety of applications, such as in seismic explo-

ration [12] or in high-frequency radar [6], are beyond the reach of full-wave solvers and must, instead, be

based on approximate models. Among these, perhaps the simplest and most broadly used is the ‘‘geomet-

rical optics’’ (GO) model that results as a lowest order (WKB) approximation of wave-like equations as the

frequency becomes infinite [38]. In this paper, we introduce a new numerical procedure for simulations in

geometrical optics that, based on the recent development of Eulerian phase-space formulations of the mod-

el [17,25], can deliver very accurate, uniformly resolved solutions which can be made to converge with arbi-

trarily high orders in general geometrical configurations.
The need for improved GO solvers can perhaps be most easily explained by noting that the current state-

of-the-art in a number of complex applications relies on, albeit quite sophisticated, ‘‘ray-tracing’’; see e.g.

[2]. As has been recognized [16], however, the Lagrangian nature of ray-tracing can present difficulties (e.g.

divergent rays leading to uneven resolution) which have prompted the recent development of new compu-

tational methods based on (Eulerian) solution of partial differential equations. Early versions of this ap-

proach concentrated on the design of upwind [35,36] and ENO schemes [19] for the direct solution of

the eikonal equation, leading to accurate approximations of the viscosity solution [15]. This (single-valued)

solution, however, represents only the wave of first arrival at any given point [15] which may be insufficient
for certain applications. Indeed, for instance, in seismics waves with larger travel-times may carry signifi-

cantly more energy than that of the viscosity solution [24], while accounting for multiple reflections in elec-

tromagnetics may be essential in constructing accurate approximations for wave fields [8]. For this reason, a

number of algorithms have been recently developed to upgrade the viscosity solution to the multi-valued

solution relevant in these cases. Among these we encounter, for instance, the ‘‘big ray tracing method’’

[1], the ‘‘method of decomposition along caustics’’ [4] and the ‘‘slowness matching method’’ [33,34]. All

of these procedures are based on domain decomposition and local approximations of viscosity solutions,

which are then combined into a multi-valued quantity.
An alternative approach to the approximation of multi-valued solutions is based on a ‘‘kinetic’’ formu-

lation that views rays as trajectories of particles following a Hamiltonian dynamics; see [16] and the refer-

ences therein. In this approach, multi-valued solutions are naturally ‘‘unfolded’’ through the introduction

of conjugate phase variables. This, however, is achieved at the expense of doubling the number of indepen-

dent variables, with the consequent potential for increased computational cost. To deal with this problem,

two alternative strategies have been developed, leading to ‘‘wavefront’’ and ‘‘moment-based’’ methods,

respectively [16]. In the former, an interface representing a wavefront is evolved following the Liouville for-

mulation, while the latter is based on the derivation of new equations (for the moments of the density) with
fewer unknowns. Here, we propose a new approximation scheme based on the kinetic viewpoint that can be

interpreted as combining elements from these two approaches. Indeed, as we further explain below, as in

wavefront methods our strategy is based on the evolution of an interface which, following [25], we define
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as the intersection of level sets of functions satisfying the Liouville equations. In contrast with [25], how-

ever, we do not resort to direct discretization of the phase variables. Rather, the procedure we present be-

low relies on suitable (spectral) representations of the densities, and on the solution of the resulting

equations for the coefficients in these expansions. In this sense then, our approach can be related to mo-

ment-based methods where our ‘‘moments’’ are not necessarily chosen to be integrals against monomials
in phase variables needing a ‘‘closure hypothesis’’, but rather against basis functions that guarantee accu-

rate representations of general phase variations.

Our work is largely motivated by the developments in [25] (see also [11,27,28]). Indeed, as we mentioned,

we shall follow this work and seek to approximate solutions to Liouville equations that implicitly define the

wavefront. In [25], the approximation procedure relied on spatial finite differences and Runge–Kutta time

discretizations. More precisely, away from scattering boundaries, a fifth-order WENO-Godunov [22]

scheme was used for the space and phase variables while a third-order TVD-RK procedure [29] (or a fourth

order strong stability preserving Runge–Kutta (SSP-RK) method [31]) was implemented to march forward
in time; when dealing with (reflecting) boundaries [11], on the other hand, the order of the spatial discret-

ization was reduced to first, due to the complications that arise in attempting to devise higher-order differ-

encing schemes in such situations. Our approach, on the other hand, is based on entirely different

discretizations which are designed: (i) to take full advantage of the smoothness of solutions to the Liouville

equations; (ii) to facilitate the treatment of scattering obstacles, all while retaining high-order convergence

characteristics. Indeed, as we further detail below, to incorporate the full regularity of solutions that results

from the unfolding of singularities our method is based on their spectral representation; to enable a simple

high-order treatment of scattering boundaries, on the other hand, we resort to a discontinuous Galerkin

[13,14] finite element method (DGFEM) for the solution of the resulting system of equations. For the time

integration, finally, the procedure is complemented with the use of a recently derived SSP-RK scheme

[10,20] which, as we demonstrate below, allows for overall approximations that are rapidly convergent.

The complexity of the resulting algorithm, without resorting to ‘‘localization’’ of the level sets [26,32]

(see also Section 6), is O(NNelemNtime), where N is the number of modes in the spectral representation of

the solution, Nelem is the number of spatial elements and Ntime is the number of time steps.

The rest of the paper is organized as follows. First, in Section 2 we briefly review the relevant equations

and, in particular, we introduce the phase-space (Liouville) formulation of the GO problem. Then, in
Section 3 we introduce and analyze the spectral/DGFEM approximation. In particular, in Section 3.1 we

demonstrate that the resulting (hyperbolic) system for the spectral coefficients can be explicitly diagonalized.

This, in turn, allows for an explicit implementation of an ‘‘upwinded’’ DGFEM, as we describe in Section

3.2. The integration of (reflecting and absorbing) boundary conditions within our new formulation is then

detailed in Section 4 and followed, in Section 5, by some numerical results in two space dimensions (three-

dimensional reduced phase-space). Finally, some comments on extensions (e.g. to physical three-dimen-

sional space) and possible improvements (e.g. relating to high-order localization) are collected in Section 6.
2. Phase-space-based geometrical optics

The basic model for high-frequency wave propagation is provided by the eikonal equation [7,18,38]
Stðx; tÞ þ cðxÞjrxSðx; tÞj ¼ 0; x 2 Rd ðd ¼ 2; 3Þ ð1Þ

for the phase S of the (acoustic/electromagnetic) field, where c(x) denotes the local wave velocity. As we

mentioned, adding to the challenges stemming from its nonlinear character, the difficulties associated with

the solution of (1) are compounded in situations where its multi-valued solutions are of interest. In this

case, as we explained above, an alternative to Lagrangian ray-tracing is provided by a formulation that

views rays as trajectories of particles following the Hamiltonian dynamics:
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dx
dt ¼ rpHðx; pÞ ¼ cðxÞ p

jpj ;

dp

dt ¼ �rxHðx; pÞ ¼ �jpjrxcðxÞ
ð2Þ
in the phase-space (x,p), where H(x,p) = c(x)jpj. With this interpretation, a ‘‘particle density function’’
f(x,p,t) will satisfy the Liouville equation [16]
ftðx; p; tÞ � rpf � jpjrxcþrxf � cðxÞ p

jpj ¼ 0: ð3Þ
This equation displays the same characteristic strips as the original eikonal equation (1) but the introduc-
tion of phase variables (p) ‘‘unfolds’’ multi-valued solutions. Moreover, this equation can be further sim-

plified by appealing to the condition that the Hamiltonian remain constant along characteristics. Indeed,

the normalization H ” 1, for instance, leads to the constraint
jpj ¼ 1

cðxÞ ;
which can be used to restrict the solutions of (3) to those of the form
f ðx; p; tÞ ¼ cðxÞd jpj � cðxÞ�1
� �

uðx; p=jpj; tÞ:
For example, in two space dimensions, letting
x ¼ ðx1; x2Þ; p ¼ ðr cosðhÞ; r sinðhÞÞ;

the function u can be shown to satisfy the simplified equation
L2½u� � ut þ c cosðhÞux1 þ c sinðhÞux2 þ cx1 sinðhÞ � cx2 cosðhÞð Þuh ¼ 0 ð4Þ
in the ‘‘reduced phase-space’’ (x1,x2,h). Similarly, in three dimensions we have
L3½u� � ut þ c sinðhÞ cosðuÞux1 þ c sinðhÞ sinðuÞux2 þ c cosðhÞux3 þ cx1 cosðhÞ cosðuÞð

þcx2 cosðhÞ sinðuÞ � cx3 sinðhÞ
�
uh þ cx1 sinðuÞ � cx2 cosðuÞð Þ uu

sinðhÞ ¼ 0; ð5Þ
where
x ¼ ðx1; x2; x3Þ; p ¼ ðp1; p2; p3Þ ¼ ðr sinðhÞ cosðuÞ; r sinðhÞ sinðuÞ; r cosðhÞÞ: ð6Þ

As we anticipated, our use of the above phase-space formulation will follow the approach initiated in [25].

There it was recognized that the (d � 1)-dimensional wavefront in the (2d � 1)-dimensional reduced phase-

space (d = 2, 3) can be simply identified through the intersection of level sets of d functions satisfying the
corresponding reduced Liouville equation. Thus, within this context, the formulation of the geometrical op-

tics evolution reduces to solving the (uncoupled) system of equations:
L2½u� ¼ 0;

L2½v� ¼ 0
ð7Þ
or
L3½u� ¼ 0;

L3½v� ¼ 0;

L3½w� ¼ 0

ð8Þ
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in two and three dimensions, respectively, where u,v,w are chosen to initially define the wavefront through

the intersection of their zero level sets; the wavefront at later times is then recovered from analogous inter-

sections [25]. Our scheme for the solution of (7) and (8) is introduced in the following section.
3. A spectral/DGFEM formulation

The considerations in Section 2 reduce the problem of approximating the geometrical optics wavefront to

that of approximating the (zero level set of the) solution of equations of the form (4) and (5). As we said, a

main property of the Liouville formulation is that it unfolds the relevant multi-valued solutions which be-

come smooth in phase-space. In addition, for the problem at hand, the formulation entails a particularly sim-

ple dependence on the phase variables, which enter (4) and (5) in a straightforward multiplicative manner. To

take advantage of these properties, we propose here a spectralmethod of solution.More precisely, in the two-
dimensional case, we shall seek a solution u = u(x1,x2,h,t) to (4) in the form of a (truncated) Fourier series
uðx1; x2; h; tÞ ¼
XN
n¼�N

Unðx1; x2; tÞeinh: ð9Þ
Similarly, in three dimensions, we propose
uðx1; x2; x3; h;u; tÞ ¼
XN
l¼0

Xl

m¼�l

Ul;mðx1; x2; x3; tÞY m
l ðh;uÞ; ð10Þ
where Y m
l denotes the classical spherical harmonics. Our strategy entails the derivation of the system of

equations satisfied in physical space by the coefficients in (9) and (10) and the design of a suitable high-order

approximation scheme for the resulting problem. As we show next, the coefficients turn out to satisfy a

rather simple (linear) hyperbolic system of equations. For such systems, in turn, high-order discontinuous

Galerkin finite element methods [13,14] have been shown to be extremely effective, and a suitable DG

approximation is presented in Section 3.2.

3.1. A hyperbolic system for the spectral coefficients

In this section, we derive and analyze the system of equations satisfied by the coefficients in the spectral

decomposition of the solution to the level set equation (4). For simplicity we shall present here the deriva-

tion and analysis for the two-dimensional case and the representation (9). Analogous, though somewhat

more involved, calculations allow for the treatment of the corresponding system of equations in three

dimensions for the coefficients in (10); see Section 6.

To derive the equations for Un in (9) we begin by substituting the expansion into (4) to obtain
XN
n¼�N

ðUnÞteinhþ ccosðhÞ
XN
n¼�N

ðUnÞx1e
inhþ csinðhÞ

XN
n¼�N

ðUnÞx2e
inhþ cx1 sinðhÞ� cx2 cosðhÞð Þ

XN
n¼�N

inUne
inh ¼ 0
or, equivalently
XN
n¼�N

ðUnÞteinhþ
XNþ1

n¼�Nþ1

c
2
ðUn�1Þx1e

inhþ
XN�1

n¼�N�1

c
2
ðUnþ1Þx1e

inhþ
XNþ1

n¼�Nþ1

�icð Þ
2

ðUn�1Þx2e
inh

þ
XN�1

n¼�N�1

ic
2
ðUnþ1Þx2e

inhþ
XNþ1

n¼�Nþ1

�cx2 � icx1ð Þ
2

iðn�1ÞUn�1e
inhþ

XN�1

n¼�N�1

�cx2 þ icx1ð Þ
2

iðnþ1ÞUnþ1e
inh ¼ 0:
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Setting
U ¼

U�N

U�Nþ1

..

.

UN�1

UN

266666664

377777775 2 C2Nþ1;
the last equation implies
Ut þ A1Ux1 þ A2Ux2 þ BU ¼ 0; ð11Þ

where A1,A2,B 2 C(2N+1)· (2N+1) are defined as:
A1 ¼

0 c
2

0 0 0 � � � 0 0 0
c
2

0 c
2

0 0 � � � 0 0 0

0 c
2

0 c
2

0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 � � � c
2

0 c
2

0 0 0 0 0 � � � 0 c
2

0

266666666664

377777777775
; ð12Þ

A2 ¼

0 ic
2

0 0 0 � � � 0 0 0

� ic
2

0 ic
2

0 0 � � � 0 0 0

0 � ic
2

0 ic
2

0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 � � � � ic
2

0 ic
2

0 0 0 0 0 � � � 0 � ic
2

0

266666666664

377777777775
ð13Þ
and
B ¼

0 ðN � 1Þ c
2

0 0 0 � � � 0 0 0

�N �c
2

0 ðN � 2Þ c
2

0 0 � � � 0 0 0

0 �ðN � 1Þ �c
2

0 ðN � 3Þ c
2

0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 � � � ðN � 2Þ �c
2

0 �N c
2

0 0 0 0 0 � � � 0 ðN � 1Þ �c
2

0

266666666664

377777777775
ð14Þ
and where we have set
c ¼ cðx1; x2Þ � cx1 þ icx2
and have denoted its conjugate by �c � cx1 � icx2 .
Clearly, from (12) and (13), Eq. (11) constitutes a symmetric hyperbolic system. In fact, the system is

strictly hyperbolic and explicitly diagonalizable. To see this, we begin by letting
m ¼ ðm1; m2Þ ¼ qðcosðgÞ; sinðgÞÞ
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and we set
AðmÞ � m1A1 þ m2A2:
Then, using (12) and (13) we have
AðmÞ ¼ qAðcosðgÞ; sinðgÞÞ
and we note that
P�1AðcosðgÞ; sinðgÞÞP ¼ Að1; 0Þ ¼ A1;
where the P = P(g) is a diagonal matrix with
P ðgÞjj ¼ e�ijg: ð15Þ
Indeed, since
AðcosðgÞ; sinðgÞÞkl ¼
c
2

dk;l�1e
ig þ dk;lþ1e

�ig
� �

;

we have
P�1AðcosðgÞ; sinðgÞÞP
� �

pq
¼ c

2
dp;q�1e

ig þ dp;qþ1e
�ig

� �
e�iðq�pÞg ¼ c

2
dp;q�1 þ dp;qþ1

� �
¼ ðA1Þpq:
Thus, we need only investigate the eigenvalues and eigenvectors of the matrix A1. As can be easily checked,

however, the eigenvalues kj are simply given by
kj ¼ kjðx1; x2Þ ¼ cðx1; x2Þ cos
jp

2ðN þ 1Þ

� �
; j ¼ 1; . . . ; 2N þ 1 ð16Þ
with a corresponding normalized eigenvector
vj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p

sin jp
2ðNþ1Þ

� �
sin 2jp

2ðNþ1Þ

� �
..
.

sin 2Njp
2ðNþ1Þ

� �
sin ð2Nþ1Þjp

2ðNþ1Þ

� �

2666666666664

3777777777775
: ð17Þ
As a result, letting
V ¼ ½v1v2; . . . ; v2Nþ1� 2 Cð2Nþ1Þ�ð2Nþ1Þ
and
K ¼ diagðk1; k2; . . . ; k2Nþ1Þ;

we have
AðcosðgÞ; sinðgÞÞ ¼ SðgÞKSðgÞ�1
; ð18Þ
where
SðgÞ ¼ P ðgÞV and SðgÞ�1 ¼ V TP ðgÞ: ð19Þ
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Finally, we note that, from (16), there are exactly N positive and N negative eigenvalues
k1 > k2 > � � � > kN > kNþ1 ¼ 0 > kNþ2 > kNþ3 > � � � > k2Nþ1;
so that the matrix A can be decomposed as
AðcosðgÞ; sinðgÞÞ ¼ AþðcosðgÞ; sinðgÞÞ þ A�ðcosðgÞ; sinðgÞÞ; ð20Þ

where
A�ðcosðgÞ; sinðgÞÞ ¼ SðgÞK�SðgÞ�1
and
Kþ ¼ diagðk1; k2; . . . ; kN ; 0; . . . ; 0Þ; K� ¼ diagð0; . . . ; 0; kNþ2; kNþ3; . . . ; k2Nþ1Þ:
3.2. Discontinuous Galerkin approximation

The hyperbolic nature of the system (11) makes it amenable to a high-order treatment via discontinuous
Galerkin finite element methods [13,14]. In order to specify the details of the DG scheme we propose to

approximate the system, we begin by re-writing it in ‘‘conservation form’’, that is
Ut þ div FðUÞð Þ þ CU ¼ 0; ð21Þ

where
FðUÞ ¼ A1U;A2U½ �

and
C ¼ B� ox1A1 � ox2A2
or, explicitly
C ¼

0 ðN � 2Þ c
2

0 0 0 � � � 0 0 0

�ðN þ 1Þ �c
2

0 ðN � 3Þ c
2

0 0 � � � 0 0 0

0 �N �c
2

0 ðN � 4Þ c
2

0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 � � � ðN � 3Þ �c
2

0 �ðN þ 1Þ c
2

0 0 0 0 0 � � � 0 ðN � 2Þ �c
2

0

266666666664

377777777775
:

ð22Þ

Next, to approximate the system (21) we consider a partition Th = {Kn} of a computational domain X and

local spaces Pk(Kn) on each element Kn consisting of polynomials of degree smaller than or equal to k.

Then, expanding
UhjKn
¼

XNk

j¼1

wjðxÞcKn
j ðtÞ; ð23Þ
in terms of basis functions wj 2 Pk(K), a DG formulation takes on the form
Z
Kn

oUh

ot
w dx�

Z
Kn

FðUhÞ � rw dxþ
Z
Kn

CUhw dxþ
Z
oKn

cFh � mw ds ¼ 0 ð24Þ
for all w 2 Pk(Kn), where m is the outward unit normal vector to oKn and cFh � m is the numerical flux on oKn

[14]. As is well known the appropriate choice of these numerical fluxes constitutes a central component
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within these schemes. For linear hyperbolic problems a natural choice is that corresponding to ‘‘upwind-

ing’’, wherein information travels along local wave directions. For the present case, and on account of

(20), the upwind flux can be written as
cFh � m ¼ AþðcosðgÞ; sinðgÞÞUþ
h þ A�ðcosðgÞ; sinðgÞÞU�

h ; ð25Þ

where U�

h denote the inner and outer values of Uh on oKn, respectively, and
m ¼ ðcosðgÞ; sinðgÞÞ: ð26Þ

Clearly, the outer values U�

h must be properly defined for elements Kn whose boundary intersects that of the
computational domain X. The precise definition of these values will, of course, depend on the boundary

conditions whose treatment we defer to the next section. In any case, substituting the expansion (23) into

the formulation (24) leads to a linear system of ordinary differential equations for the coefficients cKn
j ðtÞ

which must be integrated in time. For this we resort to the mth-order, m-stage SSP-RK scheme with low

storage introduced in [20]. This addition completes our overall strategy in a manner that, as we said, enables

calculations of arbitrarily high order while, at the same time, allowing for general geometrical

arrangements.
4. Boundary conditions: reflecting and absorbing boundaries

The exterior values U�
h to be used in the numerical flux (25) must be properly defined for elements inter-

secting the boundary of X. In the case of absorbing boundaries (as necessary, for instance, in scattering

simulations) this definition is rather straightforward: in this case, we may simply define
U�
h ¼ Uþ

h ð27Þ

to approximate an outflow boundary.

The incorporation of reflecting boundaries, on the other hand, requires further developments based, of

course, on the geometrical optics ‘‘law of reflection’’. We recall [7] that this principle asserts that at a reflect-

ing interface C we must have
incident angle ¼ reflected angle; ð28Þ

where the incident and reflected angles are defined as the angles between the incident and reflected rays and

the outward normal vector to C, respectively. More precisely, if hinc and hrefl denote the polar angles of the
incident and reflected rays, and if g denotes that of the normal vector, Eq. (28) can be written as
hinc þ p� g ¼ g� hrefl
that is
hrefl ¼ 2g� p� hinc: ð29Þ

This last equation can be used to impose a boundary condition on the level set function u in (9) in the form
uðx1; x2; h; tÞ ¼ uðx1; x2; 2g� p� h; tÞ for x 2 C; h 2 ½0; 2p�: ð30Þ
To incorporate this condition into our scheme, however, we must derive from it a relation on the Fourier

coefficients Un which should, in turn, lead to a suitable definition of U�
h in (25).

To derive this definition we begin by noting that, in terms of Fourier coefficients, the boundary condition

(30) translates to
U�nðx; tÞ ¼ einð2g�pÞUnðx1; x2; tÞ for x 2 C; n ¼ 1; . . . ;N :
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This last relation, in turn, can be written as
BUðx; tÞ ¼ 0; x 2 C; ð31Þ

where
B ¼ BðgÞ ¼

1 0 0 � � � 0 0 0 0 0 0 � � � 0 0 �aN

0 1 0 � � � 0 0 0 0 0 0 � � � 0 �aN�1 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 1 0 0 0 �a2 0 � � � 0 0 0

0 0 0 � � � 0 1 0 �a 0 0 � � � 0 0 0

26666664

37777775 2 CN�ð2Nþ1Þ ð32Þ
and
a ¼ eið2g�pÞ:
At this point, we note that the conditions in (31) are correct in number, as the system possesses precisely N

incoming characteristic directions (corresponding to the N negative eigenvalues in (16)). To justify the well-

posedness of the problem (11) subject to (32), however, we must further verify that (31) leads to an equation

that allows for the determination of the incoming part of the solution in terms of the outgoing portion.

More precisely, at any point x 2 C with normal m = (cos(g),sin(g)), we consider the normalized eigenvectors
sj of A(cos(g),sin(g)) (cf. (18)) corresponding to the eigenvalues kj in (16), j = 1, . . . ,2N + 1. Then, the pro-

jection onto the space of outgoing directions is given by
Pþ ¼ SþðSþÞT;

where
Sþ ¼ SþðgÞ ¼ ½s1; . . . ; sN �;

while that onto the incoming directions is
P� ¼ S�ðS�ÞT
with
S� ¼ S�ðgÞ ¼ ½sNþ2; . . . ; s2Nþ1�

and the condition (31) can be interpreted as providing values for P�U from knowledge of P+U. Indeed,

from (31) we have
0 ¼ BU ¼ BP�UþBðI �P�ÞU

or, equivalently
BS� ðS�ÞTU
h i

¼ �BðI �P�ÞU: ð33Þ
As we show in Appendix A, the matrix BS� 2 CN�N is (explicitly) invertible. Thus, from (33)
ðS�ÞTU ¼ � BS�ð Þ�1
BðI �P�ÞU
and therefore
P�U ¼ �S� BS�ð Þ�1
BðI �P�ÞU; ð34Þ
which provides incoming values for U in terms of its outgoing (and stationary) projection. Finally, and on

account of (34), at a reflecting boundary C we define the numerical flux as in (25) where
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U�
h ¼ �S� BS�ð Þ�1

BðI �P�ÞUþ
h : ð35Þ
5. Numerical examples

In this section, we present a few numerical results from an implementation of the two-dimensional

scheme (in three-dimensional reduced phase-space) described above. In this connection, our first set of

experiments is designed to confirm the accuracy of the implementation of both the interior scheme as well
as that of the boundary conditions. While simple exact solutions to (4) can be easily derived (e.g.,

u(x,p,t) = x1 � ccos(h)t, if c is constant), the derivation of explicit solutions satisfying reflecting or absorb-

ing boundary conditions is not straightforward. To bypass this problem while providing a full assessment of

the quality of the approximations generated by our proposed procedure, we have tested the method on the

function
uðx; h; tÞ ¼ sinð3px1Þ sinð4px2Þ sin
p
2
t

� � 1

ð1þ cosð2hÞ2Þ
ð36Þ
defined in the computational domain X = [�1,1] · [�1,1]. This function presents several desirable attributes

for the testing of our algorithms: it is oscillatory, not exactly representable by a finite polynomial expansion
and its spectral representation in phase-space also leads to an infinite series. In addition, the specific form of

the dependence in h guarantees that it also satisfies the reflecting boundary condition (30) over all of oX.
The function in (36), however, does not solve the homogeneous equation (4). Still, for any given velocity

c, it can be viewed as solving its (slightly more complex) inhomogeneous version
L2½u� � ut þ c cosðhÞux1 þ c sinðhÞux2 þ cx1 sinðhÞ � cx2 cosðhÞð Þuh ¼ Gðx; h; tÞ ð37Þ

for an appropriately defined function G. Clearly, the numerical procedure outlined in Section 3 extends

rather straightforwardly, for the most part, to the solution of (37). An exception, however, is the time inte-
gration strategy which, as described, applies only to homogeneous systems of ordinary differential equa-

tions. As follows from (37) though, in this case the coefficients cKn
j ðtÞ in (23) satisfy an inhomogeneous

system, whose solution demands a suitable extension of the SSP-RK integrator in [20] alluded to in Section

3.2. One such extension was recently introduced in [10] where its high-order convergence characteristics

were demonstrated. More precisely, if a version of order k + 1 of this extended SSP-RK method is used

to integrate the equations that result from a DG formulation with polynomials of degree k, the overall

scheme will converge with order k + 1 provided that the CFL condition
Dt 6
h

2k þ 1
ð38Þ
is satisfied. With this time integrator (which, as we mentioned, reduces to that of [20] in the absence of

source terms) the results of our overall approximation procedure to the solution (36) of (37), in the case

c ” 1, are presented in Table 1 and Fig. 1. More precisely, in Table 1 we show that, indeed, our implemen-

tation converges with the correct orders in space and time. Fig. 1, on the other hand, shows that spectral

convergence is attained in both the p-version of the finite element method, as well as in the phase variable.
The final examples are concerned with true solutions to (7) in X = [�1,1] · [�1,1] generated by a point

source located at the origin, and subject to reflecting and absorbing boundary conditions. In Fig. 2, we dis-

play the actual physical wavefront in X at different times for a case where all boundaries are perfect reflec-

tors and c ” 1; the results correspond to a truncation parameter N = 40, an approximation with

polynomials of degree four (P4) and a time-integration of order five (SSP-RK5) on a coarse grid with eight

elements (h = 1.41). The fronts in Fig. 2 are, of course, the projection of the phase-space wavefronts which



Table 1

Convergence results for different space-time approximation orders for the solution (36) of (37) (with c ” 1) at t = 1

h L2-error Order

N = 40; P1; SSP-RK2

2.83E + 00 3.02E + 00 –

1.41E + 00 3.72E + 00 �0.30

7.07E � 01 1.64E + 00 1.18

3.54E � 01 1.18E + 00 0.48

1.77E � 01 4.12E � 01 1.52

8.84E � 02 1.04E � 01 1.99

4.42E � 02 2.38E � 02 2.12

N = 40; P2; SSP-RK3

2.83E + 00 4.93E + 00 –

1.41E + 00 5.40E + 00 �0.13

7.07E � 01 1.48E + 00 1.87

3.54E � 01 4.77E � 01 1.63

1.77E � 01 6.69E � 02 2.83

8.84E � 02 8.34E � 03 3.00

4.42E � 02 1.03E � 03 3.02

N = 40; P3; SSP-RK4

2.83E + 00 6.84E + 00 –

1.41E + 00 5.74E + 00 0.25

7.07E � 01 9.93E � 01 2.53

3.54E � 01 1.57E � 01 2.66

1.77E � 01 1.15E � 02 3.77

8.84E � 02 7.07E � 04 4.02

N = 40; P4; SSP-RK5

2.83E + 00 7.36E + 00 –

1.41E + 00 5.99E + 00 0.30

7.07E � 01 6.84E � 01 3.13

3.54E � 01 3.57E � 02 4.26

1.77E � 01 1.43E � 03 4.64

8.84E � 02 4.53E � 05 4.98

The spatial meshes are successively refined by a factor of two and they contain 2, 8, 32, 128, 512, 2048 and 8192 triangular elements,

respectively (see, e.g. Fig. 2 for a display of the 8-element mesh and Fig. 4(a) for that refined to 32 elements); in every case, the time-step

is taken to be proportional to the size of the spatial discretization, and to satisfy the CFL condition (38).
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are, in turn, defined as the intersection of the zero level sets of u and v in (7). Clearly, a number of alter-

native strategies are possible to determine these level sets and their intersections; for simplicity, for this and

the examples that follow, these calculations were performed, in a post-processing stage, via linear approx-

imations on a much refined grid in phase-space. The level sets and their intersection at the time correspond-

ing to the most advanced front in Fig. 2 (t = 1.3) are shown in Fig. 3(a) and (b), respectively.

Analogous results are presented in Fig. 4(a) and (b) for the case where the velocity is not constant. These

results correspond to a velocity profile
c ¼ cðx1; x2Þ ¼ 2� 1:6 exp �ðx1 þ 1Þ2=2
� �

ð39Þ
and parameters as in the previous example (N = 40, P4, SSP-RK5), with reflecting boundaries on a 32-ele-

ment mesh. The effect of the variable velocity is evident in Fig. 4(a), particularly in the most advanced

wavefront displayed there which has reflected asymmetrically; the corresponding wavefront in phase-space

is shown in Fig. 4(b).
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Fig. 1. Spectral convergence of the scheme to the solution (36) of (37) (with c ” 1) at t = 1: (a) convergence in polynomial order k in the

spatial representation – disks – and best linear fit – line – (h = 8.84E � 02, N = 40); (b) convergence in truncation parameter N in the

spectral representation of the phase variables – disks – and best linear fit – line – (h = 4.42E � 02, k = 4).

Fig. 2. Reflecting boundaries, c ” 1: projection onto physical space of the wavefront generated by a point source at (0,0) at t = 0.325,

0.65, 0.975 and 1.3 (note the 8-element spatial mesh in the background).
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As we have said, a central characteristic of phase-space methodologies is their ability to capture multi-

valued solutions of the eikonal equation. An example of this situation is presented in Fig. 5 which again

corresponds to a domain with perfectly reflecting boundaries and c ” 1 (N = 40, h = 1.41, k = 4 and SSP-

RK5); the corresponding zero level sets of u and v and their intersection are depicted in Fig. 6. Finally,

Fig. 7 shows an instance of a domain with absorbing boundaries. Indeed, to exemplify the versatility affor-

ded by the nature of our boundary treatment (based simply on the choice of numerical fluxes), we display

the results on a domain that combines absorbing boundaries at x1 = �1, x2 = ±1 with a reflecting boundary

at x1 = 1.



Fig. 3. Zero level sets in reduced phase-space for the example in Fig. 2: (a) zero level sets of u and v at t = 1.3; (b) intersection of level

sets in (a) defining the wavefront in phase-space (note that the corresponding curve in Fig. 2 – t = 1.3 – coincides precisely with the

projection of this wavefront).

Fig. 4. Reflecting boundaries, c(x1,x2) = 2.0 � 1.6exp(�(x1 + 1)2/2): (a) projection onto physical space of the wavefront generated by a

point source at (0,0) at t = 0.35, 0.55, 0.75 and 0.95 (note the 32-element spatial mesh in the background); (b) wavefront in reduced

phase-space at t = 0.95.
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6. Extensions and improvements

As we argued in Section 3, the spectral/DG formulation readily extends to configurations in three space

dimensions. In this case, as we mentioned, we seek a solution in the form (10) where the spherical harmon-

ics Y m
l are defined as



Fig. 5. Reflecting boundaries, c ” 1: projection onto physical space of the wavefront generated by a point source at (0,0) at t = 3.75

corresponding to a multi-valued solution of the eikonal equation (note the 8-element spatial mesh in the background).

Fig. 6. Zero level sets in reduced phase-space for the example in Fig. 5: (a) zero level sets of u and v at t = 3.75; (b) intersection of level

sets in (a) defining the wavefront in phase-space (again here, the curve in Fig. 5 corresponds precisely to the projection of this

wavefront onto physical space).
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Y m
l ðh;uÞ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4p
ðl� mÞ!
ðlþ mÞ!

s
Pm
l ðcosðhÞÞeimu
and Pm
l are the associated Legendre functions. To derive the analogue of (11) in this case, we shall need the

classical formulas for the gradient of the spherical harmonics: letting p be as in (6) we have



Fig. 7. Reflecting/absorbing boundaries, c ” 1: projection onto physical space of the wavefront generated by a point source at (0,0) at

t = 0.4, 0.8, 1.2 and 1.6 (note the 8-element spatial mesh in the background).
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r
o

op1
þ i

o

op2

� �
Y m

l ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ 2Þðlþ mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y mþ1

lþ1 þ ðlþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðl� m� 1Þ
ð2lþ 1Þð2l� 1Þ

s
Y mþ1

l�1 ;

r � o

op1
þ i

o

op2

� �
Y m

l ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mþ 2Þðl� mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y m�1

lþ1 þ ðlþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mÞðlþ m� 1Þ
ð2lþ 1Þð2l� 1Þ

s
Y m�1

l�1 ;

r
o

op3
Y m

l ¼ �l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ 1Þðl� mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y m

lþ1 þ ðlþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mÞðl� mÞ
ð2lþ 1Þð2l� 1Þ

s
Y m

l�1:
From these, it follows that
r
o

opj
Y m

l ¼
X

l�16l06lþ1
m�16m06mþ1

bjlm;l0m0Y
m0

l0 ð40Þ
for suitably defined constants bjlm;l0m0 . In addition, we shall need the expressions for the basic local multipli-

cative operators:
cosðhÞY m
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ 1Þðl� mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y m

lþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mÞðl� mÞ
ð2lþ 1Þð2l� 1Þ

s
Y m

l�1;

sinðhÞeiuY m
l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mþ 2Þðlþ mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y mþ1

lþ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðl� m� 1Þ
ð2lþ 1Þð2l� 1Þ

s
Y mþ1

l�1 ;

sinðhÞe�iuY m
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mþ 2Þðl� mþ 1Þ

ð2lþ 3Þð2lþ 1Þ

s
Y m�1

lþ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ mÞðlþ m� 1Þ
ð2lþ 1Þð2l� 1Þ

s
Y m�1

l�1 ;



B. Cockburn et al. / Journal of Computational Physics 208 (2005) 175–195 191
from which we deduce X

sinðhÞ cosðuÞY m

l ¼
l�16l06lþ1

m�16m06mþ1

a1lm;l0m0Y m0

l0 ;

sinðhÞ sinðuÞY m
l ¼

X
l�16l06lþ1

m�16m06mþ1

a2lm;l0m0Y m0

l0 ;

cosðhÞY m
l ¼

X
l�16l06lþ1

m�16m06mþ1

a3lm;l0m0Y m0

l0

ð41Þ
for some constants ajlm;l0m0 . Then, substituting the expression (10) into (5) we obtain
 �
X
l;m

ðUlmÞtY m
l �

X
l;m

Ulm cx1r
oY m

l

op1
þ cx2r

oY m
l

op2
þ cx3r

oY m
l

op3

þ
X
l;m

c ðUlmÞx1 sinðhÞ cosðuÞY
m
l þ ðUlmÞx2 sinðhÞ sinðuÞY

m
l þ ðUlmÞx3 cosðhÞY

m
l

h i
¼ 0;
which, using (40) and (41), implies
ðUlmÞt þ
X

l�16l06lþ1
m�16m06mþ1

c a1l0m0;lmðUl0m0 Þx1 þ a2l0m0 ;lmðUl0m0 Þx2 þ a3l0m0;lmðUl0m0 Þx3
h i

þ
X

l�16l06lþ1
m�16m06mþ1

Ul0m0 cx1b
1
l0m0;lm þ cx2b

2
l0m0 ;lm þ cx3b

3
l0m0 ;lm

h i
¼ 0 ð42Þ
for (l,m) such that jmj 6 l and 0 6 l 6 N. Clearly, in matrix form, Eq. (42) can be written as
Ut þ A1Ux1 þ A2Ux2 þ A3Ux3 þ BU ¼ 0; ð43Þ

where Aj, B are sparse matrices with nonzero entries defined as:
ðAjÞlm;l0m0 ¼ cajl0m0;lm;

Blm;l0m0 ¼
X3

j¼1

cxjb
j
l0m0 ;lm:
Note that the formulation (43) possesses an additional advantage over that in (5) as it naturally resolves the

–artificial– singularities at the poles that are introduced when using spherical coordinates to resolve phase

variables; compare [25, Section 7].

Our spectral/DGFEM strategy also clearly extends to the calculation of high-frequency amplitudes. In-

deed, these can also be shown to satisfy Liouville-type equations [17,23,25], and are therefore amenable to

treatment by our methodology. Similarly, transmission problems can be addressed via smoothing of discon-

tinuous velocities as suggested in [25].

Finally, a number of improvements in the numerical implementation are also possible. For instance,
high-order localization and reinitialization could be included, e.g. along the lines of those proposed in

[32]; see also [26]. Also, higher-order schemes for the intersection of multi-dimensional level sets can be de-

vised to take full advantage of the accuracy of the spectral-DG solutions.
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Appendix A. An expression for the outer flux on reflection

In this Appendix, we show that the matrix ðBS�Þ�1
appearing in (34) and (35) can be computed explic-

itly. To this end, we begin by showing that the dependence of BS� on the polar angle g can be reduced to

multiplication by a diagonal matrix. Indeed, from (32), we have
Bkj ¼ BðgÞkj ¼ dk;j � dk;2ðNþ1Þ�jð�1ÞNþ1�k
ei2gðNþ1�kÞ; ðA:1Þ
so that, using (15)
ðBðgÞP ðgÞÞkj ¼
X2Nþ1

l¼1

Bkldl;je
�ijg ¼

X2Nþ1

l¼1

dk;ldl;je
�ijg � dk;2ðNþ1Þ�lð�1ÞNþ1�k

ei2gðNþ1�kÞdl;je
�ijg

h i
¼ dk;je

�ijg � dk;2ðNþ1Þ�jð�1ÞNþ1�k
ei2gðNþ1�kÞe�ijg

¼ dk;je
�ijg � dk;2ðNþ1Þ�jð�1ÞNþ1�k

ei2gðNþ1�kÞe�ið2ðNþ1Þ�kÞÞg

¼ dk;je
�ikg � dk;2ðNþ1Þ�jð�1ÞNþ1�k

e�ikg ¼ e�ikgBð0Þkj;
that is
BðgÞP ðgÞ ¼ diagðe�ig; e�i2g; . . . ; e�iNgÞBð0Þ: ðA:2Þ
On the other hand, using (15) and (19), we have
S�ðgÞ ¼ PðgÞS�ð0Þ
and therefore, from (A.2)
BðgÞS�ðgÞ ¼ BðgÞP ðgÞS�ð0Þ ¼ diagðe�ig; e�i2g; . . . ; e�iNgÞBð0ÞS�ð0Þ; ðA:3Þ

where
S�ð0Þ ¼ ½vNþ2; . . . ; v2Nþ1�

with vj as in (17). Eq. (A.3) then reduces the problem of inverting BðgÞS�ðgÞ to that of inverting the matrix

M 2 CN�N defined as
M ¼ Bð0ÞS�ð0Þ:
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To invert this matrix, in turn, we first note that from (A.1) and (17)
Mkj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p

XN
l¼1

dk;l � dk;2ðNþ1Þ�lð�1ÞNþ1�k
� �

sin
lðjþ N þ 1Þp

2ðN þ 1Þ

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p sin

kðjþ N þ 1Þp
2ðN þ 1Þ

� �
� ð�1ÞNþ1�k

sin
ð2ðN þ 1Þ � kÞðjþ N þ 1Þp

2ðN þ 1Þ

� �� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p sin

kðjþ N þ 1Þp
2ðN þ 1Þ

� �
þ ð�1ÞNþ1�kð�1ÞjþNþ1

sin
kðjþ N þ 1Þp

2ðN þ 1Þ

� �� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p 1þ ð�1Þjþk

� �
sin

kðjþ N þ 1Þp
2ðN þ 1Þ

� �
:

In particular, we have that Mkj 6¼ 0 only if k + j is even. Thus, letting
L ¼ N
2


 �
; K ¼ N � L;
we define new matrices M1 2 CL�L and M2 2 CK�K by
ðM1Þkj ¼ M2k;2j and ðM2Þkj ¼ M2k�1;2j�1:
As it turns out, the inverse matrix M�1 can be easily computed from knowledge of the inverses of M1 and

M2; and, moreover, these latter matrices are orthogonal, M�1
j ¼ MT

j . Indeed, letting:
Rkj ¼

0 if k þ j is odd;

ðM�1
1 Þk

2
;
j
2

if k and j are even;

ðM�1
2 Þkþ1

2
;
jþ1
2

if k and j are odd;

8>><>>: ðA:4Þ
we have
ðMRÞkj ¼
XN
l¼1

MklRlj ¼
XL

l¼1

Mk;2lR2l;j þ
XK
l¼1

Mk;2l�1R2l�1;j

¼

0 if k þ j is odd;PL
l¼1

ðM1Þk
2
;lðM�1

1 Þl;j
2

if k and j are even;

PK
l¼1

ðM2Þkþ1
2
;lðM�1

2 Þl;jþ1
2

if k and j are odd;

8>>>>><>>>>>:
¼ dk;j
that is
R ¼ M�1:
Finally, we show that the matrix M1 is orthogonal; the orthogonality of M2 can be similarly established.

For the sake of definiteness, we shall assume that N is even so that
L ¼ N
2
;

the case L = (N � 1)/2 (N odd) can be treated in an entirely analogous way. Under this assumption then we

have
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XL

l¼1

ðM1ÞlkðM1Þlj ¼
XL

l¼1

M2l;2kM2l;2j ¼
4

N þ 1

XL

l¼1

sin
2lð2k þ N þ 1Þp

2ðN þ 1Þ

� �
sin

2lð2jþ N þ 1Þp
2ðN þ 1Þ

� �

¼ 4

N þ 1

XL

l¼1

sin
2lkp
N þ 1

� �
sin

2ljp
N þ 1

� �

¼ 2

N þ 1

XL

l¼1

cos
2lðk � jÞp
N þ 1

� �
� cos

2lðk þ jÞp
N þ 1

� �
 �

and using
XL

l¼1

cosð2lxÞ ¼ 1

2
cosðNxÞ � 1þ sinðNxÞcotgðxÞ½ �; ðA:5Þ
we obtain
XL

l¼1

ðM1ÞlkðM1Þlj ¼
1

N þ 1
cos

Nðk� jÞp
N þ 1

� �
� cos

Nðkþ jÞp
N þ 1

� �

þ sin

Nðk� jÞp
N þ 1

� �
cosððk� jÞp=ðN þ 1ÞÞ
sinððk� jÞp=ðN þ 1ÞÞ � sin

Nðkþ jÞp
N þ 1

� �
cosððkþ jÞp=ðN þ 1ÞÞ
sinððkþ jÞp=ðN þ 1ÞÞ

�
:

ðA:6Þ
In particular, if k = j it follows that:
XL

l¼1

ðM1ÞlkðM1Þlk ¼
1

N þ 1
1� cos

2kNp
N þ 1

� �
þ N � sin

2kNp
N þ 1

� �
cosð2kp=ðN þ 1ÞÞ
sinð2kp=ðN þ 1ÞÞ


 �
¼ 1

N þ 1
1� cos

2kp
N þ 1

� �
þ N þ sin

2kp
N þ 1

� �
cosð2kp=ðN þ 1ÞÞ
sinð2kp=ðN þ 1ÞÞ


 �
¼ 1:
Similarly, if k 6¼ j and again from (A.5) and (A.6), we get
XL

l¼1

ðM1ÞlkðM1Þlj ¼ 0;
thus, establishing the orthogonality of M1.
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